Faithful variable screening for high-dimensional convex regression
نویسندگان
چکیده
منابع مشابه
Faithful Variable Screening for High-dimensional Convex Regression By
We study the problem of variable selection in convex nonparametric regression. Under the assumption that the true regression function is convex and sparse, we develop a screening procedure to select a subset of variables that contains the relevant variables. Our approach is a two-stage quadratic programming method that estimates a sum of one-dimensional convex functions, followed by one-dimensi...
متن کاملConvex Regularization for High-Dimensional Tensor Regression
In this paper we present a general convex optimization approach for solving highdimensional tensor regression problems under low-dimensional structural assumptions. We consider using convex and weakly decomposable regularizers assuming that the underlying tensor lies in an unknown low-dimensional subspace. Within our framework, we derive general risk bounds of the resulting estimate under fairl...
متن کاملTwo tales of variable selection for high dimensional regression: Screening and model building
Variable selection plays an important role in high dimensional regression problems where a large number of variables are given as potential predictors of a response of interest. Typically, it arises at two stages of statistical modeling, namely screening and formal model building, with different goals. Screening aims at filtering out irrelevant variables prior to model building where a formal d...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملVariable Screening in High-dimensional Feature Space
Variable selection in high-dimensional space characterizes many contemporary problems in scientific discovery and decision making. Fan and Lv [8] introduced the concept of sure screening to reduce the dimensionality. This article first reviews the part of their ideas and results and then extends them to the likelihood based models. The techniques are then applied to disease classifications in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2016
ISSN: 0090-5364
DOI: 10.1214/15-aos1425